我如果两个统计学家在无限的森林里失去对方,他们第一件事就是喝醉。这样,它们就会或多或少地随机行走,这将给它们找到彼此的最佳机会。然而,如果统计学家想要采摘蘑菇,他们应该保持清醒。醉醺醺、漫无目的的闲逛会减少探索区域,让搜索者更有可能回到蘑菇已经消失的地方。
这些考虑属于“随机行走”或“醉汉行走”的统计理论,在这种理论中,未来只取决于现在而不是过去。如今,随机漫步被用于模拟股票价格、分子扩散、神经活动和种群动态等过程。它还被认为描述了“基因漂变”如何导致特定基因——比如蓝色眼睛——在人群中流行。具有讽刺意味的是,这种无视过去的理论本身有着相当丰富的历史。这是安德烈•科尔莫戈罗夫(Andrei Kolmogorov)构想的众多学术创新之一。科尔莫戈罗夫是一名数学家,他的广度和能力令人吃惊,他在认真讨论苏联政治和学术生活中不断变化的可能性时,彻底改变了“不可能”在数学中的作用。
作为一个年轻人,科尔莫戈罗夫在革命后的莫斯科受到了知识分子的滋养,在那里,文学实验、艺术先锋和激进的新科学思想都在空气中弥漫。20世纪20年代初,作为一名17岁的历史系学生,他向莫斯科大学(Moscow University)的一群同学提交了一篇论文,对中世纪俄罗斯人的生活进行了非常规的统计分析。例如,它发现,对村庄征收的税通常是一个整数,而对单个家庭征收的税通常用分数表示。这篇论文的结论在当时引起了争议,即税收是由整个村庄征收,然后在家庭之间分配,而不是由家庭征收,然后由村庄积累。“你只找到了一个证据,”他的教授尖刻地说。“这对历史学家来说是不够的。你至少需要五种证据。”在那一刻,科尔莫戈罗夫决定把注意力转向数学,在数学领域,一个证明就足够了。
一个偶然的事件把科尔莫戈罗夫推向了概率论的怀抱,这是非常恰当的。概率论在当时是一门饱受诟病的数学分支学科。前现代社会常常将机遇视为神意志的表达;在古埃及和古希腊,掷骰子被视为一种可靠的占卜和算命的方法。到19世纪早期,欧洲数学家已经发展出计算概率的技术,并将概率蒸馏为有利情况的数量与所有等可能情况的数量之比。但是这种方法受到了循环的影响——概率是根据相同概率的情况定义的——并且只适用于有有限数量可能结果的系统。它不能处理可数的无限(如带有无限多个面的骰子游戏)或连续体(如带有球形骰子的游戏,其中球面上的每个点代表一个可能的结果)。试图解决这种情况的努力产生了矛盾的结果,并可能赢得坏名声。
前现代社会常常将机遇视为神意志的表达;在古埃及和古希腊,掷骰子被视为一种可靠的占卜和算命的方法。
声誉和声望是科尔莫戈罗夫珍视的品质。在换了专业后,科尔莫戈洛夫最初被卷入了尼古拉·卢津(Nikolai Luzin)周围的数学圈。卢津是莫斯科大学(Moscow University)一位极具魅力的教师。卢津的门徒们给这个组织起了个绰号叫“Luzitania”,这是一个双关语,用的是他们教授的名字和在第一次世界大战中沉没的著名英国船只的名字。用科尔莫戈罗夫的话说,他们“心连心”地团结在一起,下课后聚在一起赞美或抨击新的数学创新。他们嘲笑偏微分方程是“偏不尊重的方程”,而有限差分则是“夜差”。概率论缺乏坚实的理论基础,充满悖论,被戏称为“不幸论”。
正是通过卢齐塔尼亚,科尔莫戈罗夫对概率的评估变得更加个人化。到了20世纪30年代,斯大林主义恐怖主义的爆发意味着任何人都可以期待秘密警察在夜间敲门,而盲目的机会似乎统治了人们的生活。由于恐惧,许多俄罗斯人感到被迫参与谴责,希望增加他们的生存机会。数学家中的布尔什维克激进分子,包括卢津以前的学生,指责卢津在政治上不忠诚,并斥责他在国外发表论文。科尔莫戈罗夫自己在国外发表过作品,他可能意识到了自己的弱点。在他的前任因支持宗教自由而被布尔什维克政权监禁时,他接受了研究所所长的职位,显然他已经准备好为了自己的职业生涯做出政治妥协。现在,科尔莫戈罗夫加入了批评者的行列,转而反对卢津。卢津受到了美国科学院的公开审判,失去了所有的官方职位,但却意外地逃脱了俄罗斯当局的逮捕和枪决。卢齐塔尼亚号被自己的船员击沉了。
抛开科尔莫戈罗夫决定的道德层面不谈,他成功地把握了机会,获得了继续工作的自由。面对自己的政治一致性,科尔莫戈罗夫提出了一个激进的,最终是基础性的概率论修正。他依靠的是度量理论,这是从法国引进到俄国的一种时髦理论。测度理论代表了“长度”、“面积”或“体积”概念的一种概括,允许在常规方法不能满足要求的情况下,对各种奇怪的数学对象进行度量。例如,它可以帮助计算一个有无数个洞的正方形的面积,把它切成无数个小块,并分散在一个无限平面上。在测量理论中,仍然有可能谈到这个散射物体的“面积”(测量)。
概率论缺乏坚实的理论基础,充满悖论,被戏称为“不幸论”。
Kolmogorov在概率和度量之间进行了类比,得出了五个公理,现在通常用六个陈述来表述,这使得概率成为数学分析中一个值得尊敬的部分。柯尔莫戈洛夫理论中最基本的概念是“基本事件”,即单个实验的结果,比如抛硬币。所有基本事件形成了一个“样本空间”,即所有可能结果的集合。例如,对于马萨诸塞州的雷击,样本空间将包括该州所有可能被雷击的点。随机事件定义为样本空间中的“可测集”,随机事件发生的概率作为该集合的“测度”。例如,闪电击中波士顿的概率只取决于这座城市的面积(“度量”)。两个同时发生的事件可以用它们度量的交集来表示;条件概率;加上两个不相容事件之一发生的概率(也就是说,波士顿或剑桥被闪电击中的概率等于这两个地区面积的总和)。
大圆悖论是一个主要的数学难题,柯尔莫戈罗夫的概率论最终解决了这个难题。假设外星人随机地降落在一个完美的球形地球上,并且他们着陆的概率是平均分布的。这是否意味着它们在将球体分成两个相等的半球(也就是所谓的“大圆”)的任一圆上降落的可能性是相同的?结果表明,着陆概率沿赤道分布均匀,而沿子午线分布不均匀,向赤道方向的概率增大,在两极的概率减小。换句话说,外星人倾向于在更热的气候中着陆。这个奇怪的发现也许可以用纬度圈越靠近赤道越大来解释——然而这个结果似乎很荒谬,因为我们可以旋转这个球体,把它的赤道变成子午线。Kolmogorov证明了大圆的测量值为零,因为它是一条线段,其面积为零。这说明了有条件着陆概率的明显矛盾,因为这些概率无法精确计算。
科尔莫戈罗夫从斯大林清洗的真实世界进入了零条件概率的短暂地带,很快又回到了现实。在第二次世界大战期间,俄罗斯政府要求科尔莫戈罗夫开发提高火炮射击效率的方法。他指出,与其试图最大限度地提高每一发子弹命中目标的概率,在某些情况下,在距离完美瞄准有小偏差的情况下发射连发子弹会更好,这种战术被称为“人工分散”。他担任主管的莫斯科大学概率论系(Moscow University Department of Probability Theory)也计算了低空、低速轰炸的弹道表格。在1944年和1945年,政府授予科尔莫戈罗夫两个列宁勋章,以表彰他在战时的贡献。战后,他担任热核武器计划的数学顾问。
但科尔莫戈罗夫的兴趣也使他倾向于更哲学的方向。数学使他相信,世界既是由机会驱动的,也是根据概率定律基本有序的。他经常思考不太可能的人在人类事务中的作用。1929年,科尔莫戈罗夫在一次划独木舟旅行中与数学家帕维尔·亚历山德罗夫(Pavel Alexandrov)偶然相遇,开始了一段亲密的终身友谊。在他们交换的一封长而坦率的信中,亚历山德罗夫指责科尔莫戈罗夫有兴趣在火车上与陌生人交谈,暗示这种接触太肤浅,无法洞察一个人的真实性格。科尔莫戈罗夫对此表示反对,他对社会互动采取了一种激进的概率观点,即人们充当更大群体的统计样本。他在给亚历山德罗夫的回信中写道:“一个人倾向于吸收周围的精神,并向周围的任何人,而不仅仅是某个特定的朋友,传播他所获得的生活方式和世界观。”。
数学使他相信,世界既由偶然驱动,又从根本上按照概率法则有序。
音乐和文学对科尔莫戈罗夫来说非常重要,他相信他可以通过概率分析来洞察人类大脑的内部运作。他是一个文化精英,相信艺术价值的等级制度。巅峰之作是歌德、普希金和托马斯·曼的作品,以及巴赫、维瓦尔第、莫扎特和贝多芬的作品,这些作品的持久价值就像永恒的数学真理。科尔莫戈罗夫强调,每一件真正的艺术作品都是独特的创造,从定义上讲是不可能的,是超出简单统计规律范围的东西。“有没有可能把托尔斯泰的战争与和平以一种合理的方式进入“所有可能的小说”的集合,并进一步假设在这个集合中存在某种概率分布?他在1965年的一篇文章中讽刺地问道。
然而,他渴望找到理解艺术创造力本质的关键。1960年,科尔莫戈罗夫给一组研究人员配备了机电计算器,让他们计算俄罗斯诗歌的节奏结构。柯尔莫戈洛夫对实际节奏与古典拍子的偏离特别感兴趣。在传统诗学中,抑扬格是由一个非重读音节和一个重读音节组成的韵律。但在实践中,很少有人遵守这一规则。在普希金尤金·奥涅金作为俄罗斯语言中最著名的古典抑扬格诗歌,它的5300行诗中几乎有四分之三违反了抑扬格韵律的定义,甚至超过五分之一的音节是非重读的。Kolmogorov认为,应力偏离古典韵律的频率为一个诗人提供了一个客观的“统计画像”。他认为,一种不太可能的重音模式表明了艺术的创造性和表现力。通过研究普希金、帕斯捷尔纳克和其他俄罗斯诗人,科尔莫戈罗夫认为,他们操纵了韵律,给他们的诗歌或段落增添了“总体色彩”。
音乐和文学对科尔莫戈罗夫来说非常重要,他相信他可以通过概率分析来洞察人类大脑的内部运作。
为了衡量文本的艺术价值,Kolmogorov还使用了一种猜测字母的方法来评估自然语言的熵。在信息论中,熵是一种衡量不确定性或不可预测性的指标,与信息的信息内容相对应:信息的不可预测性越强,它所携带的信息就越多。科尔莫戈洛夫把熵变成了一种艺术独创性的衡量标准。他的团队进行了一系列实验,向志愿者展示一段俄罗斯散文或诗歌,让他们猜下一个字母,然后再猜下一个,以此类推。Kolmogorov私下表示,从信息论的观点来看,苏联报纸的信息量不如诗歌,因为政治话语使用了大量的陈词滥调,而且在内容上高度可预测。另一方面,伟大诗人的诗句则更难预测,尽管诗歌形式对他们施加了严格的限制。据科尔莫戈罗夫说,这是他们独创性的标志。真正的艺术是不可能的,一个高质量的概率论可以帮助衡量。
科尔莫戈洛夫对放置的想法不屑一顾战争与和平在所有小说的概率样本空间中,但他可以通过计算其复杂性来表达其不可预测性。科尔莫戈罗夫将复杂性设想为对象最短描述的长度,或生成对象的算法的长度。确定性对象很简单,因为它们可以通过一个简短的算法生成:比如说,一个周期性的0和1序列。真正随机、不可预测的对象是复杂的:任何复制它们的算法都必须与对象本身一样长。例如,无理数——那些不能写成分数的数字——几乎肯定在小数点后出现的数字中没有模式。因此,大多数无理数都是复杂的对象,因为它们只能通过写出实际的序列来重现。这种对复杂性的理解符合直觉,即没有任何方法或算法可以预测随机对象。现在,它作为指定对象所需的计算资源的一种度量是至关重要的,并且在现代网络路由、排序算法和数据压缩中有多种应用。
按照科尔莫戈罗夫自己的标准,他的生活是复杂的。到他1987年去世时,享年84岁,他不仅经历了一场革命、两次世界大战和冷战,而且他的创新几乎没有留下未受影响的数学领域,而且远远超出了学术界的范围。无论他一生的随机漫步是醉醺醺的还是采蘑菇的,其曲折和曲折都不是特别可预测的,也不容易描述。他成功地捕捉和应用了不可能的事物,为概率论恢复了活力,并为无数的科学和工程项目创造了坚实的基础。但他的理论也放大了人类对不可预测性的直觉与描述不可预测性的数学工具的明显力量之间的张力。
对科尔莫戈罗夫来说,他的思想既没有消除机会,也没有肯定我们这个世界的根本不确定性;他们只是提供了一种严谨的语言来谈论那些不确定的事情。“绝对随机性”的概念和“绝对决定论”一样没有意义,他曾总结道,“我们无法对不可知事物的存在有肯定的认识。”不过,多亏了科尔莫戈罗夫,我们可以解释我们什么时候以及为什么不这样做。
Slava Gerovitch博士是麻省理工学院数学史讲师,也是空间史和俄罗斯科学技术专家。作者从新话到网络话:苏联控制论的历史Gerovitch也是高中数学、工程和科学研究项目(PRIMES)的负责人。